SGLT5 Reabsorbs Fructose in the Kidney but Its Deficiency Paradoxically Exacerbates Hepatic Steatosis Induced by Fructose
نویسندگان
چکیده
منابع مشابه
SGLT5 Reabsorbs Fructose in the Kidney but Its Deficiency Paradoxically Exacerbates Hepatic Steatosis Induced by Fructose
Although excessive fructose intake is epidemiologically linked with dyslipidemia, obesity, and diabetes, the mechanisms regulating plasma fructose are not well known. Cells transfected with sodium/glucose cotransporter 5 (SGLT5), which is expressed exclusively in the kidney, transport fructose in vitro; however, the physiological role of this transporter in fructose metabolism remains unclear. ...
متن کاملEzetimibe prevents hepatic steatosis induced by a high-fat but not a high-fructose diet.
Nonalcoholic fatty liver disease is the most frequent liver disease. Ezetimibe, an inhibitor of intestinal cholesterol absorption, has been reported to ameliorate hepatic steatosis in human and animal models. To explore how ezetimibe reduces hepatic steatosis, we investigated the effects of ezetimibe on the expression of lipogenic enzymes and intestinal lipid metabolism in mice fed a high-fat o...
متن کاملProtective effect of bile acids on the onset of fructose-induced hepatic steatosis in mice.
Fructose intake is being discussed as a key dietary factor in the development of nonalcoholic fatty liver disease (NAFLD). Bile acids have been shown to modulate energy metabolism. We tested the effects of bile acids on fructose-induced hepatic steatosis. In C57BL/6J mice treated with a combination of chenodeoxycholic acid and cholic acid (100 mg/kg body weight each) while drinking water or a 3...
متن کاملDocosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes
The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, ...
متن کاملCD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance.
The pathophysiology of obesity and type 2 diabetes in rodents and humans is characterized by low-grade inflammation in adipose tissue and liver. The CD40 receptor and its ligand CD40L initiate immune cell signaling promoting inflammation, but conflicting data on CD40L-null mice confound its role in obesity-associated insulin resistance. Here, we demonstrate that CD40 receptor-deficient mice on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0056681